Mathématiques

Question

Pouvez vous m'aider ?
Pouvez vous m'aider ?

1 Réponse

  • 1) Soit n≥1
    Soit k tel que 1≤k≤n
    ⇔1≤√k≤√n car la fonction √x est croissante
    ⇔1/√k≥1/√n car la fonction 1/x est décroissante
    Donc quelque soit k tel que 1≤k≤n on a 1/√k≥1/√n

    2) On a U1=1≥√1
    C'est vrai au rang n
    Supposons qu'au rang n on ait Un≥√n
    Alors Un+1/√(n+1)≥√n+(1/√(n+1))-√(n+1)
    Or √n+(1/√(n+1))-√(n+1)=(√n√(n+1)+1-(n+1))/√(n+1)
    √n+(1/√(n+1))-√(n+1)=(√(n(n+1))-n)/√(n+1)=(√(n²(1+1/n))-n)/√(n+1)
    √n+(1/√(n+1))-√(n+1)=n(√(1+1/n)-1)/√(n+1)
    n≥1 donc n>0
    √(n+1)>0
    Par ailleurs 1+1/n≥1 donc √(1+1/n)≥1 donc √(1+1/n)-1≥0
    Donc √n+(1/√(n+1))-√(n+1)≥0 et √n+(1/√(n+1))≥√(n+1)
    On a donc Un+1≥√n+(1/√(n+1))≥√(n+1)
    et Un+1≥√(n+1)
    donc quelque soit n Un≥√n

    3) √n tend vers +oo donc Un tend vers +oo